
Model Checking Discounted Temporal

Properties ?

Luca de Alfaro a Marco Faella a Thomas A. Henzinger b,c

Rupak Majumdar d Mariëlle Stoelinga e

aCE, University of California, Santa Cruz, USA

bEECS, University of California, Berkeley, USA

cComputer and Communication Sciences, EPFL, Switzerland

dCS, University of California, Los Angeles, USA

eEWI, University of Twente, The Netherlands

Abstract

Temporal logic is two-valued: formulas are interpreted as either true or false.
When applied to the analysis of stochastic systems, or systems with imprecise for-
mal models, temporal logic is therefore fragile: even small changes in the model can
lead to opposite truth values for a specification. We present a generalization of the
branching-time logic Ctl which achieves robustness with respect to model pertur-
bations by giving a quantitative interpretation to predicates and logical operators,
and by discounting the importance of events according to how late they occur. In
every state, the value of a formula is a real number in the interval [0,1], where 1
corresponds to truth and 0 to falsehood. The boolean operators and and or are
replaced by min and max, the path quantifiers ∃ and ∀ determine sup and inf over
all paths from a given state, and the temporal operators 3 and 2 specify sup and
inf over a given path; a new operator averages all values along a path. Furthermore,
all path operators are discounted by a parameter that can be chosen to give more
weight to states that are closer to the beginning of the path.

We interpret the resulting logic Dctl over transition systems, Markov chains, and
Markov decision processes. We present two semantics for Dctl: a path semantics,
inspired by the standard interpretation of state and path formulas in Ctl, and a
fixpoint semantics, inspired by the µ-calculus evaluation of Ctl formulas. We show
that, while these semantics coincide for Ctl, they differ for Dctl, and we provide
model-checking algorithms for both semantics.

? Updated and extended text of paper to appear in Theoretical Computer Science, Elsevier. This research
was supported in part by the AFOSR MURI grant F49620-00-1-0327, the ONR grant N00014-02-1-0671, the
EU grant IST-004527 (ARTIST2), the DFG/NWO bilateral cooperation project Validation of Stochastic
Systems (VOSS2), and the NSF grants CCR-0132780, CCR-9988172, CCR-0225610, CCR-0234690, and

Preprint submitted to Theoretical Computer Science 13 March 2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 MAR 2005 2. REPORT TYPE

3. DATES COVERED
 00-03-2005 to 00-03-2005

4. TITLE AND SUBTITLE
Model Checking Discounted Temporal Properties

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Department of Computer Engineering,Santa
Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

37

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Boolean state-transition models are useful for the representation and verifi-
cation of computational systems, such as hardware and software systems. A
boolean state-transition model is a labeled directed graph, whose vertices rep-
resent system states, whose edges represent state changes, and whose labels
represent boolean observations about the system, such as the truth values
of state predicates. Behavioral properties of boolean state-transition systems
can be specified in temporal logic [19,4] and verified using model-checking
algorithms [4].

For representing systems that are not purely computational but partly physi-
cal, such as hardware and software that interact with a physical environment,
boolean state-transition models are often inadequate. Many quantitative ex-
tensions of state-transition models have been proposed for this purpose, such
as models that embed state changes into the real time line, and models that
assign probabilities to state changes. These models typically contain real num-
bers, e.g., for representing time or probabilities. Yet previous research has
focused mostly on purely boolean frameworks for the specification and veri-
fication of quantitative state-transition models, where observations are truth
values of state predicates, and behavioral properties are based on such boolean
observations [13,3,1,17]. These boolean specification frameworks are fragile
with respect to imprecisions in the model: even arbitrarily small changes in a
quantitative model can cause different truth values for the specification.

We submit that a proper framework for the specification and verification of
quantitative state-transition models should itself be quantitative. To start
with, we consider observations that do not have boolean truth values, but
real values [16]. Using these quantitative observations, we build a temporal
logic for specifying quantitative temporal properties. A Ctl-like temporal
logic has three kinds of operators. The first kind are boolean operators such
as “and” and “or” for locally combining the truth values of boolean observa-
tions. These are replaced by “min” and “max” operators for combining the
real values of quantitative observations. In addition, a “weighted average”
(⊕c) operator computes a convex combination of two quantitative observa-
tions. The second kind of construct are modal operators such as “always”
(2) and “eventually” (3) for temporally combining the truth values of all
boolean observations along an infinite path. These are replaced by “inf” (“lim
min”) and “sup” (“lim max”) operators over infinite sequences of real val-
ues. We introduce a “lim avg” (4) operator that captures the long-run aver-
age value of a quantitative observation. For nondeterministic models, where
there is a choice of future behaviors, there is a third kind of construct: the
path quantifiers “for-all-possible-futures” (∀) and “for-some-possible-future”

CCF-0427202.

2

(∃) turn path properties into state properties by quantifying over the paths
from a given state. These are replaced by “inf-over-all-possible-futures” and
“sup-over-all-possible-futures.” Once boolean specifications are replaced by
quantitative specifications, it becomes possible to discount the future, that is,
to give more weight to the near future than to the far away future. This prin-
ciple is well-understood in economics and in the theory of optimal control [2],
but is equally natural in studying quantitative temporal properties of systems
[10]. We call the resulting logic Dctl (“Discounted Ctl”). While quantitative
versions of dynamic logics [16], µ-calculi [14,20,21,10], and Hennessy-Milner
logics [11] exist, Dctl is the first temporal logic in which the non-local tem-
poral operators 3 and 2, along with the new temporal operator 4 and the
path quantifiers ∀ and ∃, are given a quantitative interpretation.

We propose two semantics for Dctl: a path semantics and a fixpoint seman-
tics. The path semantics is defined as follows. For a discount factor α < 1,
the 3α (resp. 2α) operator computes the sup (resp. inf) over a path, weigh-
ing the value of a state that occurs k steps in the future by a factor αk. As
usual, the operators 3α and 2α are one the dual of the other. The 4α op-
erator computes the discounted long-run average of the values along a path
(see, e.g., [2]), where the value of a state that occurs k steps in the future is
again multiplied by a factor αk; the 4α operator is self-dual. The ∀ and ∃
operators then combine these values over the paths: in transition systems, ∀
and ∃ associate with each state the inf and sup of the values for the paths
that leave the state; in probabilistic systems, ∀ and ∃ associate with each state
the least and greatest expectation of the value for those paths (for Markov
chains, there is a single expected value at each state, but for Markov decision
processes, the least and greatest expected value are generally different). Thus,
the path semantics of Dctl is obtained by lifting to a quantitative setting the
classical interpretation of path and state formulas in Ctl.

The fixpoint semantics is obtained by lifting to a quantitative setting the
connection between Ctl and the µ-calculus [4]. In a transition system, given
a set r of states, denote by ∃Pre(r) the set of all states that have a one-step
transition to r. Then, the semantics of ∃3r for a set r of states can be defined
as the least fixpoint of the equation x = r∪∃Pre(x), denoted µx.(r∪∃Pre(x)).
We lift this definition to a quantitative, discounted setting by interpreting
∪ as pointwise maximum, and ∃Pre(x) as the maximal expected value of x
achievable in one step [10]. For a discount factor α < 1, the semantics ∃3αr
is obtained by multiplying the next-step expectation with α, i.e., µx.(r ∪ α ·
∃Pre(x)).

The path and fixpoint semantics coincide on transition systems, but differ
on Markov chains (and consequently on Markov decision processes). This is
illustrated by the Markov chain in Figure 1. Consider the Dctl formula φ:
∃3αq, for α = 0.8. According to the path semantics, there are two paths from

3

s0

s2

1

1

s1

q = 0

q = 1

q = 0.2 1/2

1/2

Fig. 1. A Markov chain illustrating the difference between path and fixpoint semantics.

The states are labeled with the values taken by observation q.

s0, each followed with probability 1/2: the first path has the discounted sup
equal to 0.8, and the second has the discounted sup equal to 0.2; hence, φ
has the value (0.8 + 0.2)/2 = 0.5 at s0. According to the fixpoint semantics,
q ∪ 0.8 · ∃Pre(q) has the value max{0.2, 0.8 · (1 + 0)/2)} = 0.4 at s0, and this
is also the value of φ at s0.

To highlight the different perspective taken by the two semantics, consider a
water tank, and assume that q represents the daily level of water in the tank
(0 is empty, 1 is full). Consider the formula ∃3q.

Setting aside the discounting aspect, in the fixpoint semantics ∃3q is the
expected value of the amount of money we can realize by selling the tank
(where a tank with level q has value q), provided each day we choose optimally
whether to sell. In the fixpoint semantics we must decide when to stop: the
choice of selling the tank, or of waiting for one more day, corresponds to the
choice between the two sides q and ∃Pre(x) of the ∪ operator (interpreted as
pointwise maximum) in the fixpoint. Hence the fixpoint semantics is suited
for system control, since the decision of which side of ∪ to take corresponds
to a control decision for the system.

In contrast, again setting aside discounting, in the path semantics ∃3q is
the expected value of the maximum level that occurs along a system behavior
(discounting accounts for the fact that immediate emergencies are more serious
than ones that are farther in the future). In the path semantics, we have no
control over stopping: we can only observe the value of q over infinite runs,
and compute the expected maximum value it reaches. Such a semantics is
well-suited for system specification.

In Dctl, discounting serves two purposes. First, it leads to a notion of “qual-
ity” with which a specification is satisfied. For example, assume that we wish
to reach a state with a high value of q. Without discounting, the formula ∃3q
has the same value, regardless of the time required to reach q; on the other
hand, the formula ∃3αq, for α < 1, has a higher value if the high q value
is reached earlier. In other words, discounted reachability properties account
not only for how well the goal is eventually satisfied (the value of q that is
reached), but also for how soon is it satisfied. Likewise, if q represents the
“level of functionality” of a system, then the specification ∀2αq will have a

4

value that is higher the longer the system functions well, even if the system
will eventually always break. Second, discounting is instrumental in achieving
robustness with respect to system perturbations. Indeed, we will show that for
discount factors smaller than 1, the value of Dctl formulas in both semantics
is a continuous function of the values of the numerical quantities (observations,
transition probabilities) of the model.

We present algorithms for model checking both semantics of Dctl over tran-
sition systems, Markov chains, and Markov decision processes (MDPs). In all
cases but one (the ∀3 operator in the fixpoint semantics of MDPs), the al-
gorithms achieve polynomial time-complexity in the size of the system. For
transition systems, we present algorithms for 2 and 3 that achieve linear-
logarithmic running time, improving on the results presented in the prelimi-
nary version of this paper [9]. For Markov chains and MDPs, the fixpoint and
path semantics are different; while the algorithms for the fixpoint semantics
follow the approach of dynamic programming [2], the algorithms for the path
semantics are novel (and coincide with those in [9]). Note that, due to the
discounting, Dctl is a quantitative logic even when interpreted over purely
boolean state-transition systems. As for Ctl, the algorithms work recursively
on the subformulas of a given formula. Due to the duality among the operators,
we need to consider only the cases for ∃3, ∀3, and ∃4.

In transition systems, the path and fixpoint semantics coincide. In [9] we pre-
sented algorithms for ∃3 and ∀3 that are based on iterating quantitative
fixpoint expressions; the resulting time-complexity was quadratic. Here, we
present improved algorithms of linear-logarithmic (i.e. n logn) time complex-
ity. The algorithm for ∃4 (discounted long-run average along a path) builds
on both Karp’s algorithm for computing minimum mean-weight cycles and a
discounted version of Bellman-Ford for computing shortest paths; the result-
ing time complexity is cubic in the size of the transition system. In all cases,
the time complexity is linear in the size of the formula.

For Markov chains, the fixpoint and path semantics differ. The model-checking
algorithms for the fixpoint semantics rely on reductions to linear programming,
following a common approach in optimal control [2]. The algorithms for the
path semantics are based on a detailed analysis of the behavior of the paths
outgoing from each state. In both cases, the time complexity is polynomial
in the size of the system. However, the time complexity is exponential in
the size of the Dctl formula, due to the fact that the bit-wise encodings of
the valuations grows exponentially with respect to the number of nestings of
temporal operators (in practice, of course, one would be unlikely to implement
arbitrary-precision arithmetic).

In MDPs, the path semantics can be model-checked via reductions to linear
programming. The main difficulty in the reduction is that the optimal pol-

5

icy with respect to the property is not necessarily memoryless; thus, we must
phrase the linear programming problem in terms of quantities that preserve
this past dependency. As in Markov chains, the resulting algorithms are poly-
nomial in the size of the system, and exponential in the size of the formula.
Lastly, we consider the model-checking of the fixpoint semantics of Dctl over
MDPs. For the operators ∃3 and ∃4 (as well as for their duals ∀2 and ∀4),
we show that we can compute the required fixpoints via reductions to linear
programming, achieving polynomial time-complexity in the size of the system.
On the other hand, for the ∀3 operator we present an algorithm of nondeter-
ministic polynomial-time complexity with respect to the size of the system.
The difficulty is due to the fact that the ∀3 operator combines a min over
nondeterminism (the ∀ part) with a max over valuations (the 3 part), pre-
cluding known avenues of reduction to linear programming, contrary to what
was claimed in [9]. It is an open problem whether this algorithm can be im-
proved, making all model-checking algorithms fall into polynomial time with
respect to the size of the system.

A related approach to the specification and verification of quantitative sys-
tems has been proposed in [18]. There, the authors define an abstract quan-
titative µ-calculus, based on constraint semirings, which provides a general
framework for expressing properties of quantitative transition systems. They
provide model-checking algorithms, based on the iterative evaluation of fix-
points, for a restricted class of formulas (c-Ctl). They also point out the
difference between the path semantics and the fixpoint semantics of the pro-
posed language, in a similar fashion to what was done in the preliminary
version of this paper [9] and is restated in the present work. The quantitative
µ-calculus defined there subsumes the languages presented in this work, when
our definition is restricted to transition systems. However, even for the case of
transition systems, our model-checking algorithms improve over the fixpoint
iteration in the case of the 3 and 2 operators, and they allow for the efficient
computation of the 4 operator, for which the standard fixpoint evaluation
need not terminate within a finite number of steps.

2 Discounted Ctl

2.1 Syntax

Let Σ be a set of propositions and let A be a set of parameters. The Dctl

formulas over (Σ, A) are generated by the grammar

φ ::= r | t | f | φ ∨ φ | φ ∧ φ | ¬φ | φ⊕c φ | ∃ψ | ∀ψ

ψ ::= 3cφ | 2cφ | 4cφ

6

where r ∈ Σ is a proposition and c ∈ A is a parameter. The formulas generated
by φ are state formulas; the formulas generated by ψ are path formulas. The
Dctl formulas are the state formulas. The 4-free fragment of Dctl is the
set of Dctl formulas with no 4cφ subformula.

2.2 Semantics for Labeled Transition Systems

We define two semantics for Dctl: the path semantics, and the fixpoint se-
mantics. In the path semantics, the path operators 3 and 2 determine the
discounted sup and inf values over a path, and the ∃ and ∀ operators determine
the minimum and maximum values of the path formula over all paths from
a given state. The fixpoint semantics is defined by lifting to a quantitative
setting the usual connection between Ctl and µ-calculus.

Discount factors. Let A be a set of parameters. A parameter interpretation
of A is a function 〈·〉: A→ [0, 1) that assigns to each parameter a real number
between 0 and 1, called a discount factor. We write IA for the set of parameter
interpretations of A. We denote by |q|b the length of the binary encoding
of a number q ∈ Q, and we denote by |〈·〉|b =

∑

c∈A |〈c〉|b the size of the
interpretation 〈·〉 of A.

Valuations. Let S be a set of states. A valuation on S is a function v:
S → [0, 1] that assigns to each state a real between 0 and 1. The valuation v
is boolean if v(s) ∈ {0, 1} for all s ∈ S. We write VS for the set of valuations
on S. We write 0 for the valuation that maps all states to 0, and 1 for the
valuation that maps all states to 1. For two real numbers u1, u2 and a discount
factor α ∈ [0, 1), we write u1 t u2 for max{u1, u2}, u1 u u2 for min{u1, u2},
and u1 +α u2 for (1−α)·u1 +α·u2. We lift operations on reals to operations on
valuations in a pointwise fashion; for example, for two valuations v1, v2 ∈ VS,
by v1tv2 we denote the valuation that maps each state s ∈ S to v1(s)tv2(s).

Labeled transition systems. A (finite-state) labeled transition system
(LTS) S = (S, δ,Σ, [·]) consists of a finite set S of states, a transition relation
δ: S → 2S\{∅} that assigns to each state a finite nonempty set of successor
states, a set Σ of propositions, and a function [·]: Σ → VS that assigns to each
proposition a valuation. We denote by |δ| the value

∑

s∈S |δ(s)|. The LTS S is
boolean if for all propositions r ∈ Σ, the valuation [r] is boolean. A path of S
is an infinite sequence s0s1s2 . . . of states such that si+1 ∈ δ(si) for all i ≥ 0.
Given a state s ∈ S, we write Traj s for the set of paths that start in s.

The path semantics. The Dctl formulas over (Σ, A) are evaluated w.r.t.
an LTS S = (S, δ,Σ, [·]) whose propositions are Σ, and w.r.t. a parameter

7

interpretation 〈·〉 ∈ IA. Every state formula φ defines a valuation [[φ]]p ∈ VS:

[[r]]p = [r] [[φ1 ∨ φ2]]
p = [[φ1]]

p t [[φ2]]
p

[[t]]p = 1 [[φ1 ∧ φ2]]
p = [[φ1]]

p u [[φ2]]
p

[[f]]p = 0 [[φ1 ⊕c φ2]]
p = [[φ1]]

p +〈c〉 [[φ2]]
p

[[¬φ]]p = 1 − [[φ]]p [[∃ψ]]p(s) = sup{[[ψ]]p(ρ) | ρ ∈ Traj s}

[[∀ψ]]p(s) = inf{[[ψ]]p(ρ) | ρ ∈ Traj s}

A path formula ψ assigns a real [[ψ]]p(ρ) ∈ [0, 1] to each path ρ of S:

[[3cφ]]p(s0s1 . . .) = sup{〈c〉i · [[φ]]p(si) | i ≥ 0}

[[2cφ]]p(s0s1 . . .) = inf{1 − 〈c〉i · (1 − [[φ]]p(si)) | i ≥ 0}

[[4cφ]]p(s0s1 . . .) = (1 − 〈c〉) ·
∑

{〈c〉i · [[φ]]p(si) | i ≥ 0}.

The term (1−〈c〉) in the definition of [[4cφ]]p is a normalizing factor ensuring
that [[4cφ]]p(ρ) ∈ [0, 1] for all paths ρ.

The fixpoint semantics. In this semantics, the Dctl formulas are evaluated
with respect to an LTS S and a parameter interpretation 〈·〉 ∈ IA. Given
a valuation x ∈ VS, we denote by ∃Pre(x) ∈ VS the valuation defined by
∃Pre(x)(s) = max{x(t) | t ∈ δ(s)}, and we denote by ∀Pre(x) ∈ VS the
valuation defined by ∀Pre(x)(s) = min{x(t) | t ∈ δ(s)}. The fixpoint semantics
[[·]]f for the propositions, the boolean operators, and ⊕c is similar to the path
semantics, only that [[·]]p is replaced by [[·]]f . The other operators are defined
as follows:

[[∃3cφ]]f = µx.([[φ]]f t (0 +〈c〉 ∃Pre(x))) (1)

[[∀3cφ]]f = µx.([[φ]]f t (0 +〈c〉 ∀Pre(x))) (2)

[[∃2cφ]]f = µx.([[φ]]f u (1 +〈c〉 ∃Pre(x))) (3)

[[∀2cφ]]f = µx.([[φ]]f u (1 +〈c〉 ∀Pre(x))) (4)

[[∃4cφ]]f = µx.([[φ]]f +〈c〉 ∃Pre(x)) (5)

[[∀4cφ]]f = µx.([[φ]]f +〈c〉 ∀Pre(x)) (6)

Above, for a function F : VS → VS, the notation µx.F (x) indicates the unique
valuation x∗ such that x∗ = F (x∗). Uniqueness of the fixpoints is proved in
Theorem 1 for the more general case of Markov decision processes.

2.3 Semantics for Markov Processes

Given a finite set S, let Distr(S) be the set of probability distributions over
S; for a ∈ Distr(S), we denote by Supp(a) = {s ∈ S | a(s) > 0} the support
of a. A probability distribution a over S is deterministic if a(s) ∈ {0, 1} for
all s ∈ S.

8

Markov decision processes. A (finite-state) Markov decision process
(MDP) S = (S, τ,Σ, [·]) consists of a finite set S of states, a probabilistic
transition relation τ : S → 2Distr(S) \ {∅}, which assigns to each state a finite
nonempty set of probability distributions over the successor states, a set Σ of
propositions, and a function [·]: Σ → VS that assigns to each proposition a
valuation. The MDP S is boolean if for all propositions r ∈ Σ, the valuation [r]
is boolean. We denote by |τ |b the length of the binary encoding of τ , defined
by

∑

s∈S

∑

a∈τ(s)

∑

t∈Supp(a) |a(t)|b, and we denote by |[·]|b =
∑

q∈Σ

∑

s∈S |[q](s)|b
the size of the binary encoding of [·]. Then, the binary size of S is given by
|S|b = |τ |b + |[·]|b.

A finite (resp. infinite) path of S is a finite (resp. infinite) sequence s0s1s2 . . . sm
(resp. s0s1s2 . . .) of states such that for all i < m (resp. i ∈ IN) there is
ai ∈ τ(si) with si+1 ∈ Supp(ai). We denote by FTraj and Traj the sets of
finite and infinite paths of S respectively; for s ∈ S, we denote by Traj s the
infinite paths starting from s. A strategy π for S is a mapping from FTraj
to Distr(

⋃

s∈S τ(s)): once the MDP has followed the path s0s1 . . . sm ∈ FTraj ,
the strategy π prescribes the probability π(s0s1 . . . sm)(a) of using a next-
state distribution a ∈ τ(sm). For all s0s1 . . . sm ∈ FTraj , we require that
Supp(π(s0s1 . . . sm)) ⊆ τ(sm). Thus, under strategy π, after following a finite
path s0s1 . . . sm the MDP takes a transition to state sm+1 with probability
∑

a∈τ(sm) a(sm+1) · π(s0s1 . . . sm)(a). We denote by Π the set of all strategies
for S. The transition probabilities corresponding to a strategy π, together with
an initial state s, give rise to a probability space (Traj s,Bs,Prπs), where Bs is
the set of measurable subsets of 2Traj s, and Prπs is the probability measure over
Bs induced by the next-state transition probabilities described above [15,22].
Given a random variable X over this probability space, we denote its expected
value by Eπ

s [X]. For l ∈ IN, the random variable Zl: Traj si
→ S defined by

Zl(s0s1 . . .) = sl yields the state of the stochastic process after l steps.

Special cases of MDPs: Markov chains and transition systems.

Markov chains and LTSs can be defined as special cases of MDPs. An MDP
S = (S, τ,Σ, [·]) is a Markov chain if |τ(s)| = 1 for all s ∈ S. It is customary to
specify the probabilistic structure of a Markov chain via its probability transi-
tion matrix P = [ps,t]s,t∈S, defined for all s, t ∈ S by ps,t = a(t), where a is the
unique distribution a ∈ τ(s). An initial state s ∈ S completely determines a
probability space (Traj s,Bs,Prs), and for a random variable X over this prob-
ability space, we let Es[X] denote its expectation. An MDP S = (S, τ,Σ, [·])
is an LTS if, for all s ∈ S and all a ∈ τ(s), the distribution a is deterministic;
in that case, we define δ: S → 2S by δ(s) = {t ∈ S | ∃a ∈ τ(s). a(t) = 1}.

The path semantics. The Dctl formulas over (Σ, A) are evaluated with
respect to a MDP S = (S, τ,Σ, [·]) and with respect to a parameter interpreta-
tion 〈·〉 ∈ IA. The semantics [[ψ]]p of a path formula ψ is defined as for LTSs; we

9

note that [[ψ]]p is a random variable over the probability space (Traj s,Bs,Prs).
Every state formula φ defines a valuation [[φ]]p ∈ VS: the clauses for proposi-
tions, boolean operators, and ⊕c are as for LTSs; the clauses for ∃ and ∀ are
as follows:

[[∃ψ]]p(s) = sup{Eπ
s ([[ψ]]p) | π ∈ Π},

[[∀ψ]]p(s) = inf{Eπ
s ([[ψ]]p) | π ∈ Π}.

The fixpoint semantics. Given a valuation x: S → [0, 1], we denote by
∃Pre(x): S → [0, 1] the valuation defined by ∃Pre(x)(s) = maxa∈τ(s)

∑

t∈S x(t)·
a(t), and we denote by ∀Pre(x): S → [0, 1] the valuation defined by
∀Pre(x)(s) = mina∈τ(s)

∑

t∈S x(t)a(t). With this notation, the fixpoint seman-
tics [[·]]f is defined by the same clauses as for LTSs.
For a valuation x ∈ VS, we denote by ‖x‖∞ the infinity norm of x; namely
‖x‖∞ = max{x(s) | s ∈ S}. For the fixpoint semantics to be well–defined,
we have to show that the expressions on the right hand side of (1)–(6)
have a unique fixpoint. Given an operator F : VS → VS, and a constant
β ∈ [0, 1], we say that F is a β–contraction if and only if, for all x, y ∈ VS,
‖F (x) − F (y)‖∞ ≤ β · ‖x− y‖∞.

Lemma 1 The operators occurring in the right hand side of (1)–(6) are 〈c〉–
contractions.

Proof. Let α = 〈c〉 and q = [[φ]]f . Given two valuations x, y ∈ VS, let
‖x− y‖∞ = ξ. Let F be the operator used in (1), namely F (x) = qtα∃Pre(x).
For all s ∈ S, there are a, b ∈ τ(s) such that:

F (x)(s) = q(s) t α
∑

t∈S

x(t)a(t),

F (y)(s) = q(s) t α
∑

t∈S

y(t)b(t).

We prove that |F (x)(s) − F (y)(s)| ≤ α · ξ. The result is trivial if F (x)(s) =
F (y)(s) = q(s). If F (x)(s) = q(s) and F (y)(s) > q(s) we have

|F (x)(s) − F (y)(s)| = F (y)(s) − q(s) ≤ α

(

∑

t∈S

y(t)b(t) −
∑

t∈S

x(t)a(t)

)

.

Symmetrically for the case when F (y)(s) = q(s) and F (x)(s) > q(s). Thus, in
all cases it is sufficient to prove that |

∑

t∈S x(t)a(t) −
∑

t∈S y(t)b(t)| ≤ ξ. As-
sume by contradiction that

∑

t∈S x(t)a(t)−
∑

t∈S y(t)b(t) > ξ. Then, the value
∃Pre(y)(s) can be increased by taking action a instead of b, in contradiction
with the hypothesis that b is the best action from s. Formally, we have

|
∑

t∈S

y(t)a(t) −
∑

t∈S

x(t)a(t)| = |
∑

t∈S

(y(t) − x(t))a(t)| ≤ |
∑

t∈S

ξa(t)| = ξ,

10

and thus
∑

t∈S y(t)a(t) ≥
∑

t∈S x(t)a(t)−ξ >
∑

t∈S y(t)b(t). Similar arguments
hold for the remaining operators. 2

As a consequence of this lemma, and by the contraction mapping theorem,
we have immediately that the r.h.s. of (1)–(6) have a unique fixpoint, showing
that the fixpoint semantics is well-defined.

Theorem 1 The right hand side of (1)–(6) have a unique fixpoint.

2.4 Properties of Dctl

Throughout the rest of the paper, unless differently specified, we fix a param-
eter interpretation 〈·〉, a set of propositions Σ, a proposition r ∈ Σ, and a
parameter c and write [r] = q and 〈c〉 = α. We omit the superscripts p and f
and just write [[φ]] if the path and fixpoint semantics of φ coincide.

2.4.1 Duality laws. For all state formulas φ over (Σ, A), all MDPs with
propositions Σ, and all parameter interpretations of A and ∗ ∈ {p, f}, we have
the following equivalences:

[[¬∃3cφ]]∗ = [[∀2c¬φ]]∗ [[¬∃2cφ]]∗ = [[∀3c¬φ]]∗, [[¬∃4cφ]]∗ = [[∀4c¬φ]]∗.

In particular, we see that 4c is self-dual and that a minimalist definition of
Dctl will omit one of {t, f}, one of {∨,∧}, and one of {∃, ∀,3,2} 1 .

2.4.2 Comparing the two semantics. We show that the path and fix-
point semantics coincide over transition systems, and over Markov systems
with boolean propositions (for non-nested formulas), but do not coincide in
general over (non-boolean) Markov chains. This result indicates that the stan-
dard connection between Ctl and µ-calculus breaks down as soon as we con-
sider both probabilistic systems and quantitative valuations. The reason, es-
sentially, is that in probabilistic systems with quantitative evaluations, the
operator t does not commute with the expectation operator E. We start by
proving that the two semantics always coincide for the 4c operator.

Theorem 2 For all MDPs with propositions Σ, all parameter interpretations
of c, and all r ∈ Σ, we have [[∃4cr]]

p = [[∃4cr]]
f and [[∀4cr]]

p = [[∀4cr]]
f .

Proof. We prove the result for ∃, as the case for ∀ is analogous. Let v =
[[∃4cr]]

f and u = [[∃4cr]]
p. Writing out the definitions of the fixpoint and path

1 One cannot remove, say, both ∃ and 3 because the negation is not allowed in
front of path formulas.

11

semantics, we have, for all s ∈ S:

v(s) = (1 − α)·q(s) + α· max
a∈τ(s)

∑

t∈S

v(t)·a(t) (7)

u(s) = (1 − α) sup
π∈Π

Eπ
s

[

∑

i≥0

αiq(Zi)

]

. (8)

To prove that u = v, we prove that u is a fixpoint of (7). For all s ∈ S, we
have:

(1 − α)·q(s) + α· max
a∈τ(s)

∑

t∈S

a(t)·u(t)

= (1 − α)·q(s) + α· max
a∈τ(s)

∑

t∈S

a(t)·(1 − α)· sup
π∈Π

Eπ
t

[

∑

i≥0

αiq(Zi)

]

= (1 − α)·



q(s) + α· max
a∈τ(s)

∑

t∈S

a(t)· sup
π∈Π

Eπ
t

[

∑

i≥0

αiq(Zi)

]





= (1 − α)·



q(s) + sup
π∈Π

Eπ
s

[

∑

i≥1

αiq(Zi)

]





= (1 − α)· sup
π∈Π

Eπ
s

[

∑

i≥0

αiq(Zi)

]

= u(s).

2

In the following result, we prove that on LTSs the two semantics coincide for
3cr and 2cr formulas. We first introduce some notation. It is a classical result
from fixpoint theory that [[∀3cr]]

f = limn→∞ vn, where vn is defined as follows.

v0(s) = q(s) vn+1(s) = q(s) t α · min{vn(s
′) | s′ ∈ δ(s)}.

Let [[∀3
k
cr]]

p denote the path semantics of the formula ∀3cr when only the
first k + 1 states of each trajectory are considered, that is,

[[∀3
k
cr]]

p(s) = inf
s0s1...∈Traj (s)

sup
0≤i≤k

αi · q(si).

Then, the following holds.

Lemma 2 For each step k ≥ 0, we have vk = [[∀3
k
cr]]

p.

12

Proof. The case k = 0 is trivial, since v0(s) = q(s) = infs0s1...∈Traj (s) min{α0 ·
q(s0)}. For the inductive step, assume the thesis holds for some k. Then,

[[∀3
k+1
c r]]p(s) = inf

ρ∈Traj (s)
sup

0≤i≤k+1
αi · q(si)

= inf
ρ∈Traj (s)

max{q(s), sup
0<i≤k+1

αi · q(si)}

= max{q(s), inf
ρ∈Traj (s)

sup
0<i≤k+1

αi · q(si)}

= max{q(s), α · min
s′∈δ(s)

inf
ρ∈Traj (s′)

sup
0≤i≤k+1

αi · q(si)}

= vk+1(s).

2

The following theorem summarizes the relations between the semantics.

Theorem 3 The following assertions hold:

(1) For all LTSs with propositions Σ, all parameter interpretations of A, and
all Dctl formulas φ over (Σ, A), we have [[φ]]p = [[φ]]f .

(2) For all boolean MDPs with propositions Σ, all parameter interpretations
of A, and all Dctl formulas φ over (Σ, A) that contain no nesting of
path quantifiers, we have [[φ]]p = [[φ]]f .

(3) There is a Markov chain S with propositions Σ, a parameter interpreta-
tion A, and a Dctl formula φ over (Σ, A) such that [[φ]]p 6= [[φ]]f .

Proof. Part 1 is proved by structural induction on φ. The cases 2 and 3 are
a consequence of Lemma 2. The case 4 is a consequence of Theorem 2.

Part 2 follows from the equivalence between the linear and the branching
semantics of µ-calculus in the case of strongly guarded formulas, as detailed
in Theorem 6 of [7] and Theorem 3 of [10].

Part 3 is witnessed by the Markov chain in Figure 1. Formally, S = (S, τ,Σ, [·])
with S = {s0, s1, s2}, Σ = {r}, and [s0] = 0.2, [s1] = 1, and [s2] = 0. From state
s0, there are two transitions, to s1 and s2, having probability 1/2 each; states s1

and s2 are sinks. We consider the Dctl formula ∃3cr, along with a discount
factor interpretation such that α = 0.8. According to the path semantics,
there are two paths from s0, each followed with probability 1/2: the first path
has discounted sup equal to 0.8, and the second has discounted sup equal
to 0.2; hence, [[∃3cr]]

p(s0) = (0.8 + 0.2)/2 = 0.5. According to the fixpoint
semantics, α · ∃Pre(q) at s0 is 0.8(1 + 0)/2 = 0.4, and max{0.2, 0.4} = 0.4;
thus, [[∃3cr]]

f(s0) = 0.4. 2

13

2.4.3 Robustness. Consider two MDPs S = (S, τ,Σ, [·]) and S ′ =
(S, τ ′,Σ, [·]′) with the same state space S and the same set Σ of propositions.
We define

||S,S ′|| = max
s∈S

{

max
r∈Σ

|[r](s) − [r]′(s)|,

max
a∈τ(s)

min
b∈τ ′(s)

∑

s′∈S

|a(s′) − b(s′)|,

max
b∈τ ′(s)

min
a∈τ(s)

∑

s′∈S

|a(s′) − b(s′)|
}

.

It is not difficult to see that ||·, ·|| is a metric on the MDPs with state space
S. Such metric first considers one state at a time. For each state, the local
distance is given by the maximum difference between the value of a proposition
in said state in the two systems. The one-step distance, instead, considers the
best way a transition from the first system can be matched by a transition in
the second, and viceversa. For each state, the maximum of the local distance
and the one-step distance is taken. Finally, the maximum over all states is
taken.

For an MDP S and a parameter interpretation 〈·〉, we write [[·]]fS,〈·〉 and [[·]]pS,〈·〉
to denote the two semantics functions defined on S with respect to 〈·〉. The
following theorem characterizes the continuity of the fixpoint and path seman-
tics.

Theorem 4 Let S and S ′ be two MDPs with state space S, and let 〈·〉 be a
parameter interpretation.

(1) For all ε > 0, for all Dctl formulas φ and for all states s ∈ S, if
||S,S ′|| ≤ ε, then |[[φ]]fS,〈·〉(s) − [[φ]]fS′,〈·〉(s)| ≤ ε.

(2) For all Dctl formulas φ, for all ε > 0, there is a δ > 0 such that for all
states s ∈ S, if ||S,S ′|| ≤ δ, then |[[φ]]pS,〈·〉(s) − [[φ]]pS′,〈·〉(s)| ≤ ε.

Proof. We first prove statement (1), by induction on the structure of formu-
las. Fix ε > 0. If φ is a proposition r, then |r(s) − r(s)| ≤ ||S,S ′|| ≤ ε. The
cases t, f are obvious. If φ = ¬φ′, then

|[[¬φ′]]fS(s) − [[¬φ′]]fS′(s)| = |1 − [[φ′]]fS(s) − 1 + [[φ′]]fS′(s)|

and the result follows by induction. Similarly, Boolean operations are trivial
by induction.

Now consider the path formulas. The technical result we need is that
|∃Pre(f)S − ∃Pre(f)S′| ≤ ||S,S ′|| for all valuations f , where ∃Pre(f)S is the
predecessor operator in MDP S, and similarly, ∃Pre(f)S′ is the predecessor
operator in S ′.

14

In order to prove the result for path formulas, we use the fixpoint definitions
of the semantics of the path formulas. Also, we only look at formulas of the
form ∃ψ, since [[∀ψ]]f = 1 − [[∃¬ψ]]f will follow from the induction hypothesis.
We show the proof for φ = ∃3cφ

′. By induction on the structure of formulas,
|[[φ′]]fS(s) − [[φ′]]fS′(s)| ≤ ε whenever ||S,S ′|| ≤ ε. The sequence x0 = 0, xn+1 =
[[φ′]]fS ∨ α∃Pre(xn)S converges to [[φ]]fS . Similarly, the sequence y0 = 0, yn+1 =
[[φ′]]fS′ ∨ α∃Pre(yn)S′ converges to [[φ]]fS′ . We shall use induction on n to show
that these two sequences are close. For the base case, we have |x0(s)−y0(s)| =
0 ≤ ε. Assume by induction on n that |xn(s)−yn(s)| ≤ ε whenever ||S,S ′|| ≤ ε.
Then (the induction case)

|xn+1(s) − yn+1(s)| = |([[φ′]]fS ∨ α∃Pre(xn))(s) − ([[φ′]]fS′ ∨ α∃Pre(yn))(s)| ≤ ε.

Thus, |[[∃3cφ
′]]fS(s)− [[∃3cφ

′]]fS′(s)| ≤ ε whenever ||S,S ′|| ≤ ε. The cases for ∃2

and ∃4 are similar.

We now proceed to statement (2). Notice that unlike statement (1), we first fix
a formula, and let δ depend both on ε and on the formula. We shall prove the
theorem by induction on the structure of the formula. The cases for proposi-
tions and boolean operations are as before, we focus on path formulas. Again,
we only consider existential formulas.

Consider the formula φ ≡ ∃3cφ
′. By induction, we have proved for φ′ that

for every ε > 0 there is δ > 0 such that |[[φ′]]pS(s) − [[φ′]]pS′(s)| ≤ ε when-
ever ||S,S ′|| ≤ δ. Now fix an ε > 0. We give a simple bound on δ such that
|[[φ]]pS(s)− [[φ]]pS′(s)| ≤ ε whenever ||S,S ′|| ≤ δ. First, we need only look at finite
paths: choose N such that cN < ε

2
, where c is the discount factor. Then, the

contribution of any term occurring more than N steps in the future the path
is bounded by ε/2. The difference |[[∃3cφ

′]]pS − [[∃3cφ
′]]pS′ | is certainly bounded

by |S|N ·(Nε′) ·ε′, where the first term gives the number of sequences of length
N , the second gives the difference in probabilities in the two MDPs along any
behavior of length N , and the third term gives the difference in the valuations
of φ′ in the two MDPs. The value ε′ will be chosen judiciously as follows.
For the above bound to satisfy |S|NNε′2 ≤ ε/2, we must set ε′ < (ε

2|S|NN
)

1

2 .

Now by induction on φ′, we construct a δ′ such that |[[φ′]]pS(s)− [[φ′]]pS′(s)| ≤ ε′

whenever ||S,S ′|| ≤ δ′, where we further ensure that δ′ ≤ ε′ (by taking the
minimum of the constructed δ and ε′). Then, this δ′ has the property that
whenever ||S,S ′|| ≤ δ′, we have |[[φ]]pS(s)− [[φ]]pS′(s)| ≤ ε. The case ∃2cφ

′ is sim-
ilar. Finally, the case ∃4cφ

′ follows from part (1) because the path semantics
is the same as the fixpoint semantics for 4c. 2

Notice that in the continuity statement for the path semantics, δ depends on
the formula in addition to ε. In general, an iterated application of the ∃3

operator can amplify an arbitrary small difference in probabilities, as shown
by the following example.

15

s0

s2

1

1

s1

q = 0

ε

1 − ε

q = 0

q = 1

Fig. 2. A Markov chain illustrating Example 1.

Example 1 Consider the three-state Markov chain S =
({s0, s1, s2}, τ, {r}, [·]) in Figure 2. As shown in the picture, τ(s0) is the
distribution that chooses s1 with probability 1 − ε and s2 with probability
ε, and τ(si) chooses si with probability 1 for i = 1, 2. We then have
q(s0) = q(s1) = 0 and q(s2) = 1. Consider the Markov chain S ′ that differs
from S in that τ(s0) chooses s1 with probability 1. Then ||S,S ′|| = ε. Now
consider the formulas (∃3c)

nr, for n ≥ 1. Let xn = [[(∃3c)
nr]]pS,〈·〉(s0). Then

xn+1 = (1 − ε) · xn + α · ε, and the limit as n goes to ∞ is α. On the other
hand, [[(∃3c)

nr]]pS′,〈·〉(s0) = 0 for all n.

3 Model Checking Dctl

The model-checking problem of a Dctl formula φ over a system with respect
to one of the two semantics ∗ ∈ {p, f} consists in computing the value [[φ]]∗(s)
for all states s of the system under consideration. Similarly to Ctl model
checking [4], we recursively consider one of the subformulas ψ of φ and compute
the valuation [[ψ]]∗. Then we replace ψ in φ by a new proposition pψ with
[pψ] = [[ψ]]∗. Because of the duality laws stated in Section 2.4.1, it suffices to
focus on model checking formulas of the forms ∃3cr, ∀3cr, and ∀4cr, for a
proposition r ∈ Σ. We will present the algorithms, for both semantics, over
transition systems in Section 3.1, over Markov chains in Section 3.2, and over
MDPs in Section 3.3.

For complexity analyses, we assume that operations on reals (comparison,
addition, and multiplication) can be performed in constant time: in other
words, we provide the asymptotic complexity of each algorithm in terms of
the number of arithmetic operations.

3.1 Model Checking Dctl over Transition Systems

We fix a finite LTS S = (S, δ,Σ, [·]). As stated in Theorem 3, the two semantics
of Dctl coincide over LTSs. Hence, only one algorithm is needed to model
check a formula in either semantics.

The fixpoint semantics of ∃3cr and ∀3cr (equations (1) and (2)) suggest
approximation algorithms for evaluating the corresponding formulas over LTSs

16

by Picard iteration. For instance, [[∃3cr]]
f = limn→∞ vn, where v0(s) = q(s),

and vn+1(s) = q(s)tα·max{vn(s
′) | s′ ∈ δ(s)} for all n ≥ 0. Lemmas 4 and 10

show that these algorithms reach their fixpoints within |S| steps, thus yielding
exact algorithms rather than approximations. As stated in [9], this leads to
algorithms for model checking ∃3cr and ∀3cr in time O(|S| · |δ|). Here, we
provide improved algorithms of complexity O(|δ| + |S| log |S|).

The algorithms use a priority queue data structure, that provides the following
functionalities.

• insert(Q, t, x): Inserts element t in the queue Q and it assigns priority x to
t.

• empty(Q): Returns true if the queue Q is empty, and false otherwise.
• extract max (Q): Returns a pair (t, x), where t is an element with the highest

priority in Q and x is its priority, and it removes t from the queue.
• increase key(Q, t, x): If t belongs to the queue Q and its current priority

is smaller than x, then increases its priority to x, otherwise it leaves Q
unchanged.

By using heaps, we can implement these procedures such that computing
the function empty takes time O(1), while the other functions require time
O(logn), where n is the number of elements in the queue, see for instance [5].

3.1.1 Model checking ∃3. Informally, the idea behind the improved al-
gorithm for ∃3r is as follows. First, we set u(s) = q(s) for all states s, and
we mark the states “not-done”. Then, we iteratively pick the not-done state
s having the largest value of u(s), and we mark it “done”; we also propagate
to all its predecessors t the value u(t) := u(t) t α · u(s). We show that when
a state is marked “done”, it holds u(s) = [[∃3cr]](s). This algorithm can be
implemented using a priority queue that contains all the “not-done” states, as
follows.

Algorithm 1
function ExistsDiamond(S, α, q)
vars:

val : state array of rationals
Q : priority queue

init:
for each t ∈ S do

insert(Q, t, q(t))
done

main:
while not empty(Q) do

(t, val[t]) := extract max (Q)
for each s such that t ∈ δ(s) do

increase key(Q, s, α · val[t])
done

17

done
return val

To show the correctness of the algorithm, we first observe that the value
[[3cr]](ρ) is attained at the first occurrence of a certain state in the path ρ and
that the value [[∃3cr]](s) is attained on an acyclic, finite path.

Lemma 3 Given a path ρ = s0s1 . . . ∈ Traj(s), there exists k ≥ 0 such that:
(i) for all 0 ≤ i < k: si 6= sk, and (ii) [[3cr]](ρ) = αkq(sk).

Proof. Consider a path ρ = s0s1 . . . and let X = {αi · q(si) | i ≥ 0} and
u = supX = [[3cr]](ρ). Consider two indices 0 < j < k, such that sj = sk.
Then, αk · q(sk) = αk · q(sj) < αj · q(sj) < u. In words, the discounted values
of r at state sk is smaller than every previous occurrence of the same state.
2

Lemma 4 Given a state s ∈ S, there is a finite, acyclic path s0s1 . . . sk ∈
FTraj(s) such that:

[[∃3cr]](s) = αkq(sk).

Proof. From Lemma 3. 2

Lemma 5 During the execution of Algorithm 1, it is always true that, if state
s does not belong to the queue, then val[s] is greater than or equal to the
maximum priority in the queue.

Proof. At the beginning, the property is trivially true. If the property is
true at some moment, and extract max is called, the property remains true.
Moreover, if the property is true at some moment, and increase key(Q, t, ·)
is called, the property also remains true. This follows from the fact that the
priority of t can only be increased to α · x, where x is the priority of a state
which has just been removed from the queue. 2

The following results use the abbreviation v(s) for [[∃3cr]](s).

Lemma 6 During the execution of Algorithm 1, a state s is never assigned a
priority greater than v(s).

Proof. The property holds after initialization because then val[s] = q(s) ≤
v(s). Assume that the property is true and that the function increase key is
called. Then there exists a pair (t, val[t]) with t ∈ δ(s) and which was just
removed from the queue. Applying the definition of v and the assumption

18

yields v(s) ≥ α · v(t) ≥ α · val[t] = val[s]. All other statements trivially
preserve this property. 2

Lemma 7 During the execution of Algorithm 1, when a state s is extracted
from the queue, val[s] = v(s).

Proof. For all states s ∈ S, let

ls = min{|ρ| | ρ is a finite, acyclic path between s and t with v(s) = α|ρ|q(t)}.

Note that Lemma 4 ensures that the above minimum is never taken over an
empty set. We prove our statement by induction on ls.

If ls = 0, we have v(s) = q(s). Then, Lemma 6 guarantees that the priority of
s is never increased from its initial value of q(s), and we obtain the result.

If ls > 0, then we have v(s) = maxt∈δ(s) αv(t), say v(s) = αv(t0). Moreover,
ls > lt0 . Now, consider the moment where t0 was extracted from the queue. By
induction hypothesis, we have val[t0] = v(t0). Lemma 6 yields that val[s] ≤
v(s) = αv(t0) = αval[t0]. Then, in particular, Lemma 5 implies that s was still
in the queue when t0 was extracted. Since t0 ∈ δ(s), the function increase key
is called and, since val[s] ≤ αv(t0), this call sets val[s] to its final value αv(t0).
2

The following is a direct consequence of Lemma 7.

Lemma 8 [Correctness] Let val = ExistsDiamond(S, α, q). For all s ∈ S,
val[s] = [[∃3cr]](s).

Lemma 9 [Complexity] Algorithm 1 runs in time O(|δ|+ |S| log |S|).

Proof. The initialization phase alone takes time O(|S| log |S|). In each itera-
tion of the main loop, a state t is extracted from the queue and increase key is
called on all predecessors of t. Thus, increase key may be called several times
on each state. However, the priority of a state s can only be increased once.
To see this, assume that at some point the priority of s is increased to the
value αval[t]. It holds that all the states that are still in the queue have pri-
ority at most val[t]. Therefore, the priority of s cannot be further increased.
Considering that increase key(·, s, ·) runs in constant time unless it actually
increases the value of s, the complexity of the main loop reduces to examining
every edge in the LTS (time O(|δ|)), plus increasing the value of each state
at most once (time O(|S| log |S|)). 2

19

Notice that if we want to compute [[∃3cr]] on a fixed state s, we can achieve
a smaller complexity by exploiting the equation

[[∃3cr]](s) = max{αsp(s,t) · q(t) | t ∈ S},

where sp(s, t) is the length of an (unweighted) shortest path from s to t. The
values sp(s, t) can be computed by a breadth first search over the LTS, yielding
time complexity O(|S| + |δ|) for the above algorithm.

3.1.2 Model checking ∀3. The algorithm for ∀3 is similar to the algo-
rithm for ∃3, except that the valuation of a state is increased when all of its
successors are marked “done”, rather than each time a successor is marked
“done”. Again, the algorithm can be implemented using a priority queue, as
follows.

Algorithm 2
function ForallDiamond(S, α, q)
vars:

val : state array of rationals
count : state array of integers
Q : priority queue

init:
for each t ∈ S do

count[t] := |δ(t)|
insert(Q, t, q(t))

done
main:

while not empty(Q) do
(t, val[t]) := extract max (Q)
for each s such that t ∈ δ(s) do

count[s] := count[s] − 1
if count[s] = 0 then increase key(Q, s, α · val[t])

done
done
return val

When proving the correctness of Algorithm 2, we use the short notation v(s)
for [[∀3cr]](s). Moreover, we denote by prio(s) the priority of s, when s is a
state belonging to the queue.

For all s0 ∈ S, we define STraj (s0) (S stands for “simple”) to be the set of
all finite paths ρ = s0 . . . sn such that: (i) ρ is acyclic (no state repetitions),
and (ii) it can be extended in one step to a cyclic path, i.e. there is i ≤ n s.t.
si ∈ δ(sn). Notice that STraj (s0) is finite and every path in STraj (s0) contains
at most |S|−1 steps. In the statement of the following lemma, we assume that
the semantics of 3cr is extended to finite paths in the obvious way.

20

Lemma 10 In order to compute the value of [[∀3cr]](s), only paths in STraj(s)
need to be considered. Formally,

[[∀3cr]](s) = min
ρ∈STraj(s)

[[3cr]](ρ).

Moreover, there is a path ρ ∈ Traj(s) such that [[∀3cr]](s) = [[3cr]](ρ).

Proof. We first prove that infρ∈Traj (s)[[3cr]](ρ) ≥ minρ∈STraj (s)[[3cr]](ρ). Let
ρ∗ ∈ STraj (s) be any path such that [[3cr]](ρ

∗) = minρ∈STraj (s)[[3cr]](ρ). If we
prove that every path ρ ∈ Traj (s) gives a value for 3cr greater than the one
of ρ∗, we are done. Take any path ρ = s0s1 . . . in Traj (s). Let ρ′ be the longest
prefix of ρ which is an acyclic path. Clearly, ρ′ ∈ STraj . Since ρ′ is a prefix of
ρ, it holds that [[3cr]](ρ) ≥ [[3cr]](ρ

′) ≥ [[3cr]](ρ
∗).

Conversely, we prove that infρ∈Traj (s)[[3cr]](ρ) ≤ minρ∈STraj (s)[[3cr]](ρ). We do
this by showing that every element in STraj (s) has a corresponding element
in Traj (s) which assigns the same value to 3cr, thus also proving the second
statement of the Lemma.
Let ρ = s0 . . . sn be an element of STraj (s) and let ρsn+1 be an extension of
ρ which is a cyclic path. Formally, sn+1 = sj for some 0 ≤ j ≤ n. Let ρ′ be
the infinite path obtained by repeating forever the loop in ρsn+1, i.e. ρ′ =
s0 . . . sj−1(sj . . . sn)

ω. By Lemma 3, the value [[3cr]](ρ
′) = supi≥0 α

i · [[r]](ρ′(i))
is attained at the first occurrence of some state. By construction of ρ′ this
state must occur in the first n+ 1 states of ρ′, which are the original states of
ρ. Therefore, [[3cr]](ρ

′) = sup0≤i≤n α
i · [[r]](si) = [[3cr]](ρ). 2

Lemma 11 During the execution of Algorithm 2, it is always true that, if
state s does not belong to the queue, then val[s] is greater than or equal to the
maximum priority in the queue.

Proof. As for Lemma 5. 2

Lemma 12 During the execution of Algorithm 2, a state s is never assigned
a priority greater than v(s).

Proof. By contradiction, let s be the first state whose priority is modified to
a value greater than v(s), by means of a call to increase key(Q, s, α · val[t]).
Notice that this can only happen if count[s] = 1 when t is extracted from the
queue.
Since s is the first such node, the priority of t was never set to a value greater
than v(t). Thus, after the above call to increase key , we have v(s) < prio(s) =
α ·val[t] ≤ α ·v(t). Considering Lemma 10, let ρ ∈ Traj (s) be a path such that
[[3cr]](ρ) = v(s). It must be [[3cr]](ρ) ≤ α · v(t). Let ρ = (s s1s2 . . .), we claim
that the state s1 is still in the queue when t is extracted, thus contradicting
the assumption that count[s] = 1 when t is extracted.

21

If s1 was extracted before t, by Lemma 11 we get val[s1] ≥ val[t]. Therefore, we
get from the initial assumption that v(s) < α · val[t] ≤ α · val[s1] ≤ α · v(s1) ≤
α · [[3cr]](s1s2 . . .), and at the same time v(s) = q(s) t α · [[3cr]](s1s2 . . .) ≥
α · [[3cr]](s1s2 . . .), which is a contradiction. 2

Lemma 13 During the execution of Algorithm 2, when a state s is extracted
from the queue, val[s] = v(s).

Proof. For all states s, let ACFs be the set of acyclic (and thus finite) paths
ρ starting at s that satisfy:

• if t is the last state of ρ, then v(t) = q(t), and
• if t is a state of ρ that is not the last, then v(t) > q(t).

Note that this set is non-empty. To see this, let t∗ be the state with highest
v-value among those reachable from s; then, ACFs must contain a prefix of
each acyclic path from s to t∗. Let also ls = max{|ρ| | ρ ∈ ACFs}. We prove
our statement by induction on ls.
If ls = 0, we have v(s) = q(s). Then, Lemma 12 guarantees that the priority
of s is never increased from its initial value of q(s), and we obtain the result.
If ls > 0, we have v(s) > q(s). Then, for all states t ∈ δ(s), we have lt ≤

ls − 1 and v(t) ≥ v(s)
α

> v(s). By inductive hypothesis, when t is extracted,
val[t] = v(t). Now, if s is extracted before t, count[s] never reached 0 and
thus the priority of s was never modified from its initial value q(s). Thus,
Lemma 11 guarantees that, after s is extracted, all elements still in the queue
have priority at most q(s). We then obtain that, when t is finally extracted,
val[t] ≤ q(s) < v(s) ≤ v(t), which contradicts the inductive hypothesis. This
proves that all successors of s are extracted before s itself. Notice that v(s) =
αmint∈δ(s) v(t). Then, when the last successor of s leaves the queue, it assigns
the correct value v(s) to the priority of s. 2

The following is a direct consequence of Lemma 13.

Lemma 14 [Correctness] Let val = ForallDiamond(S, α, q). For all s ∈ S,
val[s] = [[∀3cr]](s).

Lemma 15 [Complexity] Algorithm 2 runs in time O(|δ|+ |S| log |S|).

Proof. The initialization phase requires time O(|S| log |S|). In each iteration
of the main loop, a different state is extracted from the queue and its incoming
edges are considered. An optional call to increase key is made. In total, every
edge in the LTS is considered once (time O(|δ|)) and increase key is called at
most once for every state (time O(|S| log |S|)). 2

22

3.1.3 Model checking ∀4. Computing [[∀4cr]](s) consists in minimizing
the (discounted) average [[4cr]] over the paths from s. As observed by [23]
for the non-discounted case, the minimal discounted average is obtained on a
path ρ′ from s which, after some prefix ρ keeps repeating some simple cycle `.
Hence ` contains at most |S| states. To find ρ′, we use two steps. In the
first phase, we find for each state s the simple cycle ` starting at s with the
minimal discounted average. In the second phase, we find the best prefix-cycle
combination ρ`ω.

Phase 1. We need to compute

Lα(s) = min{[[4cr]](ρ) | ρ ∈ Traj s and ρ = (s0s1s2 . . . sn−1)
ω and n ≤ |S|},

where the value [[4cr]](ρ) is given by 1−α
1−αn ·

∑n−1
i=0 α

i·q(si). Consider for n ≥ 0
the recursion

v0(s, s
′) = 0, vn+1(s, s

′) = q(s) + α·min{vn(t, s
′) | t ∈ δ(s)}.

Then vn(s, s
′) minimizes

∑n−1
i=0 α

i·q(si) over all finite paths s0s1 . . . sn with
s0 = s and sn = s′. Hence

Lα(s) = (1 − α)·min
{

v1(s,s)
1−α1 ,

v2(s,s)
1−α2 , . . . ,

v|S|−1(s,s)

1−α|S|−1

}

.

For a fixed state s′, computing min{vn(t, s
′) | t ∈ δ(s)} for all s ∈ S can be

done in O(|δ|) time. Therefore, vn+1 is obtained from vn in O(|S|2 + |S|·|δ|) =
O(|S|·|δ|) time. Hence, the computation of v|S|−1 and Lα requires O(|S|2·|δ|)
time. A possible implementation of this phase is sketched in Algorithm 3,
where it holds that Lα = LoopCost(S, α, q). To make the complexity of
the algorithm more explicit, the transition function δ is treated as a relation
δ ⊆ S × S.

Phase 2. After a prefix of length n, the cost Lα(s) of repeating a cycle at state
s has to be discounted by αn, which is exactly the factor by which we discount
q(s) after taking that prefix. Hence, we modify the original LTS S into an LTS
S+, as follows. For every state s ∈ S, we add a copy ŝ whose weight w+(ŝ)
we set to Lα(s); the weights w+(s) of states s ∈ S remain q(s). Moreover, for
every t ∈ S and s ∈ δ(t), we add ŝ as a successor to t, that is, δ+(t) = δ(t)∪{ŝ |
s ∈ δ(t)} and δ+(ŝ) = {ŝ}. Taking the transition from t to ŝ corresponds to
moving to s and repeating the optimal cycle from there. We find the value of
the optimal prefix-cycle combination starting from s as the discounted distance
from s to Ŝ = {ŝ | s ∈ S} in the modified graph S+ with weights w+. Formally,
given an LTS S, a state s, a weight function w: S → R

≥0, a discount factor
α, and a target set T , the minimal discounted distance from s to T is d(s) =
min{

∑n−1
i=0 α

i·w(si) | s0s1 . . . sn−1 ∈ FTraj (s) and sn−1 ∈ T}. The value of d(s)
for s ∈ S is computed by the call DiscountedDistance(S+, w+, α, Ŝ) to the
Algorithm 4, which is a discounted version of the Bellman-Ford algorithm for

23

Algorithm 3
function LoopCost(S, α, q)
vars:

vi, for i ∈ {0, . . . , |S| − 1} : (state * state) array of rationals
Lα : state array of rationals

init:
for each s, t ∈ S do

v0[s, t] := 0
done
for each s, t ∈ S and i ∈ {1, . . . , |S| − 1} do

vi[s, t] := ∞
done

main:
for i := 1 to |S| − 1 do

for each edge (s, t) ∈ δ do
for each s′ ∈ S do

if vi[s, s
′] > vi−1[t, s

′] then vi[s, s
′] := vi−1[t, s

′]
done

done
done
for each s, s′ ∈ S do

vi[s, s
′] := q(s) + αvi[s, s

′]
done
for each s ∈ S do

Lα[s] := (1 − α) min{ v1[s,s]
1−α

, v2[s,s]
1−α2 , . . . ,

v|S|−1[s,s]

1−α|S|−1 }
done
return Lα

Algorithm 4
function DiscountedDistance(S, w, α, T)
vars:

d : state array of rationals
init:

for each t ∈ S do
if t ∈ T then d[t] := w(t) else d[t] := ∞

done
main:

for i := 1 to |S| − 1 do
for each s ∈ S and s′ ∈ δ(s) do

if d[s] > w(s) + α · d[s′] then d[s] := w(s) + α · d[s′]
done

done
return d

24

finding shortest paths. Our algorithm performs backward computation from
the set T , because discounted shortest paths (i.e., paths whose discounted
distance is minimal among all paths with the same first and last state) are
closed under suffixes, but not under prefixes.

Like the standard version, discounted Bellman-Ford runs in O(|S|·|δ|) time.
Thus, the complexity of computing [[∀4cr]] is dominated by the first phase.

Lemma 16 [Correctness] Let d = DiscountedDistance(S+, w+, α, Ŝ), where
S+, w+ and Ŝ are defined in the previous section. For all s ∈ S, d[s] =
[[∀4cr]](s).

Lemma 17 [Complexity] The value [[∀4cr]] can be computed in time O(|S|2 ·
|δ|).

3.1.4 Complexity of Dctl model checking over LTSs. The overall
complexity of model checking a Dctl formula is polynomial in the size of the
system and the size of the formula.

Theorem 5 Consider a Dctl formula φ, an LTS S = (S, δ, P, [·]), and a
parameter interpretation 〈·〉. The following assertions hold:

(1) The problem of model checking φ over S with respect to 〈·〉 can be solved
in time O(|S|2·|δ|·|φ|).

(2) If φ does not contain the 4 operator, then the problem of model checking
φ over S with respect to 〈·〉 can be solved in time O((|δ|+ |S| log |S|) · |φ|).

3.2 Model Checking Dctl over Markov Chains

As stated by Theorem 2, the path and fixpoint semantics over Markov chains
coincide for the formula ∃4cr. Hence, in Section 3.2.4 we present an algorithm
for model checking this formula over Markov chains in either semantics. By
contrast, the path and the fixpoint semantics over Markov chains may differ for
the formulas ∃3cr and ∀3cr. Hence, we need to provide algorithms for both
semantics. Because of the absence of nondeterministic choice in a Markov
chain, [[∃3cr]]

∗ = [[∀3cr]]
∗ for ∗ ∈ {f, p}; so giving algorithms for ∃3c suffices.

Section 3.2.1 gives the algorithm for model checking ∃3cr over a Markov
chain with respect to the path semantics; Section 3.2.3 treats the formula
∃3cr in the fixpoint semantics. In the following, we consider a fixed Markov
chain (S, τ,Σ, [·]) and its probability transition matrix P . We write I for the
identity matrix.

3.2.1 Model checking ∃3 in the path semantics. When evaluating
[[∃3cr]]

p in a state s, we start with the initial estimate q(s). If s is the state

25

smax with the maximum value of q, the initial estimate is the correct value. If s
has the second largest value for q, the estimate can only be improved if smax is
hit within a certain number l of steps, namely, before the discount αl becomes
smaller than q(s)

q(smax)
. This argument is recursively applied to all states.

Let s1, . . . , sn be an ordering of the states in S such that q(s1) ≥ q(s2) ≥ · · · ≥
q(sn). We use integers as matrix indices, thus writing P (i, j) for psi,sj

. For all
1 ≤ j < i ≤ n, let

ki,j =















blogα
q(si)
q(sj)

c if q(si) > 0

0 if q(si) = 0 and q(sj) = 0

∞ otherwise

Let v(si) = [[∃3αr]]
p(si). Then, v(s1) = q(s1), and we can express the value of

v(si) in terms of the values v(s1), . . . , v(si−1). Let K = max{ki,j | ki,j < ∞},
and for all l > 0, let Bi

l = {sj | 1 ≤ j < i and 1 ≤ l ≤ ki,j}. Intuitively, Bi
l

contains those states that, if hit in exactly l steps from si, can increase the
value of v(si).

For the (arbitrary) state si, the following holds:

v(si) = q(si) · stay
i +

i−1
∑

j=1

v(sj) ·
ki,j
∑

l=1

αl·goij,l, (9)

where stay i = Prsi
[
∧

l>0 Zl 6∈ Bi
l], goij,l = Prsi

[

Zl = sj ∧
∧l−1
m=1 Zm 6∈ Bi

m

]

, and

the random variable Zl was defined in Section 2.3 as the state of the markov
chain after l steps. It is easy to check that stay i +

∑i−1
j=1

∑ki,j

l=1 goij,l = 1. We
proceed in two phases. The first phase handles states si with q(si) > 0. Since
the sequence (Bi

l)l>0 is decreasing, it can have at most |S| different values.
It follows that there exist m ≤ |S| and bi1 ≤ · · · ≤ bim+1 ∈ IN and sets
X i

1, . . . , X
i
m ⊆ S such that bi1 = 1, bim+1 = K + 1, and for all k = 1, . . . , m

and all bik ≤ l < bik+1, we have Bi
l = X i

k. Let P i
k be the substochastic ma-

trix obtained from P by disabling all transitions leading to states in X i
k, i.e.,

P i
k(j

′, j) = 0 for all j ′, j with sj ∈ X i
k. Then, for given bik ≤ l < bik+1, we have

goij,l =
(

(P i
1)
bi
2
−bi

1 · (P i
2)
bi
3
−bi

2 · . . . · (P i
k−1)

bi
k
−bi

k−1 · (P i
k)
l−bi

k · P
)

(i, j).

Let mi
j = max{k | sj ∈ X i

k} be the index of the last X i
k containing sj. We

26

have

ki,j
∑

l=1

αl·goij,l =

mi
j

∑

k=1

bi
k+1

−1
∑

l=bi
k

αl·goij,l =

(

mi
j

∑

k=1

αb
i
k · (P i

1)
bi
2
−bi

1 · (P i
2)
bi
3
−bi

2 · . . . · (P i
k−1)

bi
k
−bi

k−1 ·
(

bi
k+1

−bi
k
−1

∑

l=0

αl · (P i
k)
l · P

))

(i, j) =

(

mi
j

∑

k=1

αb
i
k · (P i

1)
bi
2
−bi

1 · (P i
2)
bi
3
−bi

2 · . . . · (P i
k−1)

bi
k
−bi

k−1 ·
(I − (αP i

k)
bi
k+1

−bi
k

I − αP i
k

)

· P
)

(i, j).

Each matrix (P i
k)
bi
k+1

−bi
k can be computed by repeated squaring in time O(|S|3·

log bik). Some further calculations show that, for a fixed i, both
∑ki,j

l=1 α
l·goij,l

and
∑ki,j

l=1 goij,l can be computed in time O(|S|4 ·logK). The value stay i is given
by 1 −

∑

j,l go
i
j,l. The total complexity of this phase is thus O(|S|5 · logK).

The second phase considers those states si with q(si) = 0. Let u be the smallest
index i such that q(si) = 0. Now, goij,l is the probability of hitting sj after
exactly l steps, meanwhile avoiding all states with indices smaller than u. To
compute v(si) efficiently, we define a stochastic matrix P0 from P by adding
an absorbing state sn+1 and using sn+1 to turn all states sj with j < u into
transient states (so, for all j < u, P0(j, n + 1) = 1 and P0(j, j

′) = 0 for
j ′ 6= n+1). Also, we set v̄ to be the column vector with v̄j = v(sj) (computed
in phase 1), if j < u, and v̄j = 0 otherwise. Then,

v(si) =
u−1
∑

j=1

v(sj) ·
∞
∑

l=1

αl · (P0)
l(i, j) = ((I − αP0)

−1 · v̄)(i). (10)

Solving the system (10) takes time O(|S|3) using LUP decomposition. The
time spent in the two phases amounts to O(|S|5 · logK), which is polynomial
in the size of the input.

Lemma 18 The value [[∃3cr]]
p can be computed in time O(|S|5 · logK).

3.2.2 Alternative algorithm for ∃3 in the path semantics. We can
solve the system (9) using an alternative recursion. We obtain an algorithm
that takes time O(|S|3 · K). As K can be exponential in the number of bits
used to encode the numerical constants in the system, this algorithm is only
pseudo-polynomial. However, in principle this algorithm performs better than
the previous one when K < |S|2 · logK. We outline this solution below.

The main step in the algorithm presented in the previous section is to compute
the values goij,l for states si for which q(si) > 0. For l > 0, let C i

l be the event

27

“Zl 6∈ Bi
l”. It holds that

goij,l = Prsi
[Zl = sj ∧ C

i
1 ∧ . . . ∧ C

i
l−1]

= Prsi
[Zl = sj | C

i
1 ∧ . . . ∧ C

i
l−1] · Prsi

[Ci
l−1 | C

i
1 ∧ . . . ∧ C

i
l−2] · . . . · Prsi

[Ci
1].

For each j = 1, . . . , i−1 and l > 0, let p(sj, l) = Prsi
[Zl = sj |

∧l−1
m=1 Zm 6∈ Bi

m].
In words, p(sj, l) is the probability that, starting in si, the system reaches sj
after exactly l steps, given that in each previous step it does not hit states
that can influence v(si). For all j = 1, . . . , n and 0 < l ≤ K, we can com-
pute Prsi

[Zl = sj | C
i
1 ∧ . . . ∧ Ci

l−1] together with p(sj, l) using the following
recursion:

p(sj, 1) = P (i, j)

Prsi
[Ci

1] =
∑

{p(st, l) | st 6∈ Bi
1}

p(sj, l + 1) =
1

Prsi
[Ci
l | Ci

1 ∧ . . . ∧ C i
l−1]

·
∑

{P (t, j) · p(st, l) | st 6∈ Bi
l}

Prsi
[Ci
l+1 | Ci

1 ∧ . . . ∧ C i
l] =

∑

{p(st, l) | st 6∈ Bi
l+1}

For a fixed i, the previous recursion takes time O(|S|2 ·K). Then,

goij,l = p(sj, l) ·
l−1
∏

m=1

Prsi

[

Ci
m | Ci

1 ∧ . . . ∧ C
i
m−1

]

.

It follows that, for a fixed i, all values goij,l can be computed in time O(|S|2·K).
The total complexity is thus O(|S|3 ·K). For states si such that q(si) = 0, we
again solve the system (10) using LUP decomposition. Overall, this gives an
algorithm that runs in O(|S|3 ·K).

Lemma 19 The value [[∃3cr]]
p can be computed in time O(|S|3 ·K).

3.2.3 Model checking ∃3 in the fixpoint semantics. The value [[∃3cr]]
f

on a MC can be computed by transforming the fixpoint (1) into a linear-
programming problem, following a standard approach. Expanding the defini-
tion of (1) for MCs, we have that [[∃3cr]]

f is the unique fixpoint of the following
equation in v : S 7→ IR: for all s ∈ S,

v(s) = q(s) t α·
∑

t∈S

v(t)·ps,t. (11)

The following lemma enables us to compute this fixpoint via linear program-
ming.

Lemma 20 Consider the following linear-programming problem in the set
{v(s) | s ∈ S} of variables: minimize

∑

s∈S v(s) subject to

v(s) ≥ q(s) v(s) ≥ α·
∑

t∈S

v(t)·ps,t

28

for all s ∈ S. Let v̂ ∈ VS be an optimal solution, we have v̂ = [[∃3cr]]
f .

The above linear programming problem can be solved in time polynomial in
|S|b and |α|b.

3.2.4 Model checking ∀4 in both semantics. Formulas of the type
∀4cr can be evaluated by the following classical equation [12].

Lemma 21 Let [[∃4cr]] and q denote column vectors, we have

[[∃4cr]] = (1 − α) ·
∑

i≥0

αiP iq = (1 − α) · (I − αP)−1 · q.

Thus, we can compute the value [[∃4cr]](s) for each state s ∈ S by solving a
linear system with |S| variables. This takes time O(|S|log2 7) using Strassen’s
algorithm or O(|S|3) using LUP decomposition.

3.2.5 Complexity of Dctl model checking over Markov chains. The
overall complexity is polynomial in the size of the system, and exponential in
the size of the formula. The latter exponential complexity is due to the fact
that the number of arithmetic operations is polynomial in the size of the bit-
wise encoding of the valuations, and these encodings grow exponentially with
respect to the number of nestings of temporal operators.

Theorem 6 Given a Dctl formula φ, a Markov chain S = (S, τ, P, [·]),
and a parameter interpretation 〈·〉, the problem of model checking φ over S
with respect to 〈·〉 can be solved in time polynomial in |S|, |[·]|b, and |〈·〉|b, and
exponential in |φ|.

3.3 Model Checking Dctl over Markov Decision Processes

As it is the case for Markov chains, also for MDPs the path and fixpoint
semantics do not coincide for the formulas ∃3cr and ∀3cr, so that sepa-
rate algorithms are needed. The two semantics do coincide for the formula
∀4cr on MDPs, hence one algorithm suffices. We consider a fixed MDP
S = (S, τ,Σ, [·]).

3.3.1 Model checking ∃3 and ∀3 in the path semantics. If α = 0,
then trivially [[∃3cr]]

p(s) = [[∀3cr]]
p(s) = q(s) at all s ∈ S, so in the following

we assume 0 < α < 1. The problem of computing [[∃3cr]]
p on an MDP can

be viewed as an optimization problem, where the goal is to maximize the
expected value of the sup of q over a path. As a preliminary step to solve the
problem, we note that in general the optimal strategy is history dependent,

29

s2

q = 0

t1

t5

t4

t3

1/2

1/2

q = 1

q = 0.8

q = 0

q = 0.8

a1

a2q = 0

s

Fig. 3. An MDP requiring a memory strategy for [[∃3cr]]
p(s).

that is, the choice of distribution at a state depends in general on the past
sequence of states visited by the path.

Example 2 Consider the system depicted in Figure 3 and assume α = 1.
The optimal choice in state s2 depends on whether t1 was hit or not. If it was,
the current sup is 0.8 and the best choice is a1, because with probability 1

2
the

sup will increase to 1. If t1 was not hit, the best choice is a2, because it gives
a certain gain of 0.8, rather than an expected gain of 0.5. The same argument
holds if α is sufficiently close to 1.

While the above example indicates that the optimal strategy is in general
history-dependent, it also suggests that all a strategy needs to remember is
the maximum value that has occurred so far along the path. For s ∈ S and
x ∈ IR, we define

h∃(s, x) = sup
π∈Π

Eπ
s

[

x t sup
i≥0

αiq(Zi)
]

h∀(s, x) = inf
π∈Π

Eπ
s

[

x t sup
i≥0

αiq(Zi)
]

.

Obviously, we have [[∃3cr]]
p(s) = h∃(s, 0) and [[∀3cr]]

p(s) = h∀(s, 0). Note
that the type of h∃ and h∀ is S × IR 7→ IR. To compute these quantities, we
define two operators H∃, H∀ : (S × IR 7→ IR) 7→ (S × IR 7→ IR) as follows, for
all v : S × IR 7→ IR, s ∈ S, and x ∈ IR:

H∃(v)(s, x) =











x if x ≥ 1

α· max
a∈τ(s)

∑

t∈S

v
(

t,
x t q(s)

α

)

·a(t) otherwise (12)

H∀(v)(s, x) =











x if x ≥ 1

α· min
a∈τ(s)

∑

t∈S

v
(

t,
x t q(s)

α

)

·a(t) otherwise (13)

Intuitively, the equation (12) can be understood as follows. At a state s =
sm of a path s0s1 . . ., the quantity v(sm, x) represents the maximum over all
strategies of Esm

[supi≥0 α
iq(Zi)] given that max0<i≤m α

−iq(sm−i) = x. The
recursion (12) then relates v(s, x) to v(t, y) at the successors t of s, where at t
we consider the new conditioning y = (x t q(s))/α, thus discounting x t q(s)
by α−1 (as s is one step before t). The following lemma states that h∃ and h∀

are the unique fixpoints of H∃ and H∀, respectively.

30

Lemma 22 h∃ and h∀ are the unique fixpoints of H∃ and H∀.

Proof. It is easy to see that the operatorsH∃ and H∀ admit a unique fixpoint,
as they are α-contractions. We show that h∃ is a fixpoint of H∃; the case for
h∀ and H∀ is analogous: we show thus that H∃(h∃)(s, x) = h∃(s, x), for all
s ∈ S and x ∈ IR. First, note that for x ≥ 1 we have h∃(s, x) = x, as the
expectation of supi≥0 α

iq(Zi) can be no larger than 1. For x < 1, we have:

H∃(h∃)(s, x) = α· max
a∈τ(s)

∑

t∈S

a(t)·h∃
(

t,
x t q(s)

α

)

= α· max
a∈τ(s)

∑

t∈S

a(t)· sup
π∈Π

Eπ
t

[

x t q(s)

α
t sup

i≥0
αiq(Zi)

]

= max
a∈τ(s)

∑

t∈S

a(t)· sup
π∈Π

Eπ
t

[

x t q(s) t sup
i≥0

αi+1q(Zi)

]

= sup
π∈Π

Eπ
s

[

x t sup
i≥0

αiq(Zi)

]

= h∃(s, x).

2

Since we are ultimately interested in the value of h∃(s, 0) for s ∈ S, and since

if x ≥ 1 we have Eπ
s

[

x t supi≥0 α
iq(Zi)

]

= x for all s ∈ S and π ∈ Π, it suffices
to consider values for x that belong to the finite set

X = {q(s)/αk | s ∈ S ∧ k ∈ IN ∧ q(s)/αk < 1}.

To estimate the cardinality of X, consider any state s: if q(s) ∈ {0} ∪ [α, 1),
then s has only one representative in X, namely q(s). If q(s) = 1 then s
has no representative at all in X. Finally, if q(s) ∈ (0, α), s has ks repre-
sentatives q(s), q(s)/α, q(s)/α2, . . . , q(s)/αks−1, where ks = dlogα q(s)e. Thus,
let Y = {q(s) | s ∈ S ∧ q(s) ∈ (0, α)}; if Y = ∅, |X| ≤ |S|; otherwise,
|X| ≤ |S|·dlogα(minY)e.

The fixpoints of H∃ and H∀ can be computed via linear programming, follow-
ing a standard approach, enabling us to compute the path semantics of ∃3

and ∀3 in MDPs.

Lemma 23 The following assertions hold:

(1) Consider the following linear program in the set {v(s, x) | s ∈ S∧x ∈ X}
of variables: minimize

∑

s∈S

∑

x∈X v(s, x) subject to

v(s, x) ≥ α ·
∑

t∈S

ṽ
(

t,
x t q(s)

α

)

·a(t)

31

for all s ∈ S, all x ∈ X, and all a ∈ τ(s), where ṽ(t, x) is 1 if x ≥ 1, and
is v(t, x) otherwise. Denoting by {v̂(s, x) | s ∈ S ∧ x ∈ X} an optimal
solution, we have [[∃3cr]]

p(s) = v̂(s, q(s)) for all s ∈ S.
(2) Consider the following linear program in the set {v(s, x) | s ∈ S∧x ∈ X}

of variables: maximize
∑

s∈S

∑

x∈X v(s, x) subject to

v(s, x) ≤ α ·
∑

t∈S

ṽ
(

t,
x t q(s)

α

)

·a(t)

for all s ∈ S, all x ∈ X, and all a ∈ τ(s), where ṽ(t, x) is 1 if x ≥ 1, and
is v(t, x) otherwise. Denoting by {v̂(s, x) | s ∈ S ∧ x ∈ X} an optimal
solution, we have [[∀3cr]]

p(s) = v̂(s, q(s)) for all s ∈ S.

The linear programming problems in the above theorem contain at most 2·|S|·
|X| variables. Hence, if q-values are encoded in binary notation, the number
of variables in the encoding is linear in the size of the input encoding of the
MDP.

3.3.2 Model checking ∃3 and ∀3 in the fixpoint semantics. The
computation of [[∃3cr]]

f on an MDP can be performed by transforming the fix-
point (1) into a linear-programming problem, following a standard approach.
Expanding the definition of (1), we have that [[∃3cr]]

f is the unique fixpoint
of the following equation in v ∈ VS: for all s ∈ S,

v(s) = q(s) t α· max
a∈τ(s)

∑

t∈S

v(t)·a(t). (14)

The following theorem enables us to compute this fixpoint via linear program-
ming.

Lemma 24 Consider the following linear-programming problem in the set
{v(s) | s ∈ S} of variables: minimize

∑

s∈S v(s) subject to

v(s) ≥ q(s) v(s) ≥ α·
∑

t∈S

v(t)·a(t)

for all s ∈ S and all a ∈ τ(s). Denoting by {v̂(s) | s ∈ S} an optimal solution,
we have [[∃3cr]]

f = v̂.

The above reduction to linear programming yields an algorithm for [[∃3cr]]
f

that requires time polynomial in |S|b and |α|b. The computation of [[∀3cr]]
f ,

on the other hand, is not known to be reducible in this fashion to linear
programming, and as a consequence, we are only able to provide an algorithm
that is in nondeterministic polynomial time in |S|b and |α|b.

32

Define the two operators Lγ, L̂ : VS 7→ VS, where γ ∈ Γ, as follows, for all
v ∈ VS and s ∈ S:

Lγ(v)(s) = q(s) t α·
∑

t∈S

v(t)·γ(s)(t)

L̂(v)(s) = q(s) t α· min
a∈τ(s)

∑

t∈S

v(t)·a(t).

Comparing the definition of L̂ with (2), we have that [[∀3cr]]
f = µv.L̂v. Unfor-

tunately, while (14) consisted only of max-operators, the operator L̂ contains
a mixture of max and min, and it is not known how to reduce its computation
to the solution of a single linear programming problem.

The fixpoint of L̂ can be computed using a standard policy-improvement
scheme [2]. A policy is a mapping γ : S 7→ Distr(S) such that γ(s) ∈ τ(s)
for all s ∈ S; we denote by Γ the set of all policies. For a fixed policy γ, the
operator Lγ involves only max, and its fixpoint can be computed by linear
programming.

Lemma 25 For γ ∈ Γ, the fixpoint µv.Lγv coincides with the optimal solution
of the linear programming problem in v ∈ VS that asks to minimize

∑

s∈S v(s)
subject to v(s) ≥ q(s) and v(s) ≥ α·

∑

t∈S v(t)·γk(s)(t) for all s ∈ S.

For γ ∈ Γ, we denote the fixpoint of Lγ by vγ = µv.Lγv. To obtain a policy
iteration scheme, we define the policy improvement operator H : Γ 7→ Γ as
follows, for all γ ∈ Γ:

H(γ)(s) = arg min
a∈τ(s)

∑

t∈S

vγ(t)·a(t).

We construct a sequence of policies γ0, γ1, γ2, . . . by letting γ0 be arbitrary,
and for k ≥ 0, by letting γk+1 = H(γk). The convergence of this sequence
follows from the fact that there are only finitely many policies, and from the
following lemma, which prevents cycles in the sequence.

Lemma 26 For any γ0 ∈ Γ, let γk+1 = H(γk) for k ≥ 0. We have that
vγk+1

≤ vγk
for all k ≥ 0.

Proof. The result is a consequence of the fact that vγk+1
= limn→∞Lnγk+1

(L̂(vγk
)),

and of the fact that Lγk+1
and L̂ are monotonic, with respect to the pointwise

ordering of VS. 2

The following lemma then enables the computation of [[∀3cr]]
f .

Lemma 27 Let γ ∈ Γ be arbitrary, and let γ̂ = limk→∞Hk(γ). Then, [[∀3cr]]
f =

vγ̂ .

33

Proof. First, note that the sequence {Hk(γ)}k≥0 converges, by Lemma 26.

Second, note that since H(γ̂) = γ̂, it must be also L̂(vγ̂) = Lγ̂(vγ̂) = vγ̂, so

that vγ̂ is a fixpoint of L̂. 2

The set Γ is of size exponential in
∑

s∈S |τ(s)|, and this type of policy iteration
is not known to terminate in polynomial time. However, the problem can be
solved in NPTIME in |S|b by guessing an optimal policy.

Lemma 28 The value [[∀3cr]]
f can be computed in NPTIME in |S|b.

Proof. To compute [[∀3cr]]
f , we can guess γ ∈ Γ and check that γ = H(γ);

we have then that [[∀3cr]]
f = µv.Lγv. All the required computation can be

performed via linear programming. 2

3.3.3 Model checking ∀4 in both semantics. With the two semantics
for ∀4cr coinciding, a single algorithm suffices for model checking ∀4 in both
semantics. The fixpoint semantics of this formula immediately suggests an
algorithm based on standard methods used for discounted long-run average
problems [2]. Expanding the definition (6), we have that [[∀4cr]] is the unique
fixpoint of the following equations in v ∈ VS: for all s ∈ S,

v(s) = (1 − α)·q(s) + min
a∈τ(s)

∑

t∈S

v(t)a(t).

The fixpoint can be easily computed by linear programming, again following
a standard approach [2].

Lemma 29 Consider the following linear-programming problem in the set
{v(s) | s ∈ S} of variables: maximize

∑

s∈S v(s) subject to

v(s) ≤ (1 − α)·q(s) + α·
∑

t∈S

v(t)·a(t)

for all s ∈ S and all a ∈ τ(s). Denoting by {v̂(s) | s ∈ S} an optimal solution,
we have [[∀4cr]] = v∗.

3.3.4 Complexity of Dctl model checking over MDPs. The complex-
ity of the model-checking problem for Dctl formulas in MDPs is summarized
by the following theorem.

Theorem 7 Given a Dctl formula φ, an MDP S = (S, τ, P, [·]), and a
parameter interpretation 〈·〉, the following assertions hold:

(1) The problem of computing [[φ]]p over S with respect to 〈·〉 can be solved in
time polynomial in |S|b and |〈·〉|b, and exponential in |φ|.

34

(2) The problem of computing [[φ]]f over S with respect to 〈·〉 can be solved
in nondeterministic polynomial time in |S|b and |〈·〉|b, and exponential in
|φ|.

The first part of the theorem follows from Theorems 23 and 29; the second part
follows from Theorems 24, 28, and 29. Note that the algorithms presented for
solving model-checking problem for Dctl in MDPs have different complexities
for the path and fixpoint semantics. This contrasts with the situation for
transition systems and Markov chains, where we have presented algorithms for
Dctl model-checking that are of polynomial time-complexity with respect to
the size of the system for both the path and the fixpoint semantics. As in the
case of Markov chains, also in MDPs the complexity of the model-checking
problem is exponential in the size of the Dctl formula, due to the blow-up of
the binary representations of subformula valuations.

4 Conclusions

The traditional theories of discrete transition systems are boolean: the value
of a proposition at a state is boolean, and the value of a temporal property at
a state is boolean. In boolean theories, property values are sensitive to small
perturbations of a system: if the value of a proposition at a single state s is
switched, then the value of a temporal property may switch at an arbitrary
distance from s. This is problematic, first, because there may be imprecision
in models, and second, because engineering artifacts that are based on boolean
models are equally fragile.

We built a continuous theory of discrete transition systems by systematically
replacing boolean values with real values: the value of a proposition at a state
is a real, and so is the value of a temporal property at a state. In a systems
theory based on the reals, it is natural to introduce discounting over time,
and probabilities over transitions. We achieved continuity in the sense that
small perturbations of the reals that specify a system lead to small changes in
the values of discounted temporal properties. The resulting theory is therefore
robust against imprecisions in measurement and implementation.

We showed that over probabilistic systems, the standard temporal operators
can be given two different natural, continuous interpretations: a path seman-
tics and a fixpoint semantics. The fixpoint semantics corresponds to a contin-
uous generalization of state bisimilarity [10], while no such characterization is
known for the path semantics. On the other hand, the path semantics gives
a natural limit interpretation to infinite behaviors of a system. We presented
model-checking algorithms for both semantics, but the question whether the
fixpoint semantics of ∀3 properties over MDPs can be computed in polynomial
time remains open.

35

References

[1] C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Computer-Aided

Verification, LNCS 1855, pages 358–372. Springer, 2000.

[2] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995. Volumes I and II.

[3] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In Foundations of Software Technology and

Theoretical Computer Science, LNCS 1026, pages 499–513. Springer, 1995.

[4] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to

Algorithms. McGraw-Hill, 2001.

[6] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis. Technical
Report STAN-CS-TR-98-1601, Stanford University, 1997.

[7] L. de Alfaro. Quantitative Verification and Control via the Mu-Calculus. In
CONCUR 03: Proceedings of the 14th International Conference, Lectures Notes
in Computer Science 2761, pages 103–127, Springer-Verlag, 2003.

[8] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. Model
checking discounted temporal properties. Technical Report UCSC-CRL-03-12,
University of California, Santa Cruz, 2003.

[9] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. Model
checking discounted temporal properties. In TACAS04, LNCS 2988, 2004.

[10] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Discounting the future in
systems theory. In Automata, Languages, and Programming, LNCS 2719, pages
1022–1037. Springer, 2003.

[11] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov
processes. Information and Computation, 179:163–193, 2002.

[12] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

[13] H. Hansson. Time and Probabilities in Formal Design of Distributed Systems.
Elsevier, 1994.

[14] M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In
Proc. Logic in Computer Science, pages 111–122. IEEE, 1997.

[15] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. Van
Nostrand, 1966.

[16] D. Kozen. A probabilistic PDL. In Proc. Theory of Computing, pages 291–297.
ACM, 1983.

36

[17] M.Z. Kwiatkowska. Model checking for probability and time: From theory to
practice. In Proc. Logic in Computer Science, pages 351–360. IEEE, 2003.

[18] A. Lluch-Lafuente and U. Montanari. Quantitative µ-calculus and CTL based
on constraint semirings. In Proc. 2nd Workshop on Quantitative Aspects of

Programming Languages. ENTCS, 2004.

[19] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer, 1991.

[20] A. McIver. Reasoning about efficiency within a probabilistic µ-calculus. In Proc.

Probabilistic Methods in Verification, pages 45–58. Technical Report CSR-98-4,
University of Birmingham, 1998.

[21] A. McIver and C. Morgan. Games, probability, and the quantitative µ-calculus.
In Logic Programming, Artificial Intelligence, and Reasoning, LNCS 2514, pages
292–310. Springer, 2002.

[22] D. Williams. Probability with Martingales. Cambridge University Press, 1991.

[23] U. Zwick and M.S. Paterson. The complexity of mean-payoff games on graphs.
Theoretical Computer Science, 158:343–359, 1996.

37

